A superconvergence result for solutions of compact operator equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergence of Galerkin Solutions for Hammerstein Equations

In the present paper, we discuss the superconvergence of the interpolated Galerkin solutions for Hammerstein equations. With the interpolation post-processing for the Galerkin approximation xh, we get a higher order approximation I 2r−1 2h xh, whose convergence order is the same as that of the iterated Galerkin solution. Such an interpolation post-processing method is much simpler than the iter...

متن کامل

Hermitian solutions to the system of operator equations T_iX=U_i.

In this article we consider the system of operator equations T_iX=U_i for i=1,2,...,n and give necessary and suffcient conditions for the existence of common Hermitian solutions to this system of operator equations for arbitrary operators without the closedness condition. Also we study the Moore-penrose inverse of a ncross 1 block operator matrix and. then gi...

متن کامل

Improvement by Iteration for Compact Operator Equations

The equation y = / + Ky is considered in a separable Hubert space H, with K assumed compact and linear. It is shown that every approximation to y of the form yXn = £nanl«. (where {u-} is a given complete set in H, and the an¡, 1 < / < n, are arbitrary numbers) is less accurate than the best approximation of the form y2n = f + ZnbnjKUj, if ii is sufficiently large. Specifically it is shown that ...

متن کامل

The solutions to some operator equations in Hilbert $C^*$-module

In this paper, we state some results on product of operators with closed ranges and we solve the operator equation $TXS^*-SX^*T^*= A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $TS = 1$. Furthermore, by using some block operator matrix techniques, we nd explicit solution of the operator equation $TXS^*-SX^*T^*= A$.

متن کامل

‎A matrix LSQR algorithm for solving constrained linear operator equations

In this work‎, ‎an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$‎ ‎and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$‎ ‎where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$‎, ‎$mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$‎, ‎$ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2003

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700037916